基于Redis集群的分布式锁

分布式锁 Redlock

由于前面介绍的基于单Redis节点的分布式锁在failover的时候会产生解决不了的安全性问题,因此antirez提出了新的分布式锁的算法Redlock,它基于N个完全独立的Redis节点(通常情况下N可以设置成5)。

运行Redlock算法的客户端依次执行下面各个步骤,来完成获取锁的操作:

  • 获取当前时间(毫秒数)。

  • 按顺序依次向N个Redis节点执行获取锁的操作。这个获取操作跟前面基于单Redis节点的获取锁的过程相同,包含随机字符串my_random_value,也包含过期时间(比如PX 30000,即锁的有效时间)。为了保证在某个Redis节点不可用的时候算法能够继续运行,这个获取锁的操作还有一个超时时间(time out),它要远小于锁的有效时间(几十毫秒量级)。客户端在向某个Redis节点获取锁失败以后,应该立即尝试下一个Redis节点。这里的失败,应该包含任何类型的失败,比如该Redis节点不可用,或者该Redis节点上的锁已经被其它客户端持有(注:Redlock原文中这里只提到了Redis节点不可用的情况,但也应该包含其它的失败情况)。

  • 计算整个获取锁的过程总共消耗了多长时间,计算方法是用当前时间减去第1步记录的时间。如果客户端从大多数Redis节点(>= N/2+1)成功获取到了锁,并且获取锁总共消耗的时间没有超过锁的有效时间(lock validity time),那么这时客户端才认为最终获取锁成功;否则,认为最终获取锁失败。

  • 如果最终获取锁成功了,那么这个锁的有效时间应该重新计算,它等于最初的锁的有效时间减去第3步计算出来的获取锁消耗的时间。

  • 如果最终获取锁失败了(可能由于获取到锁的Redis节点个数少于N/2+1,或者整个获取锁的过程消耗的时间超过了锁的最初有效时间),那么客户端应该立即向所有Redis节点发起释放锁的操作(即前面介绍的Redis Lua脚本)。

当然,上面描述的只是获取锁的过程,而释放锁的过程比较简单:客户端向所有Redis节点发起释放锁的操作,不管这些节点当时在获取锁的时候成功与否。

由于N个Redis节点中的大多数能正常工作就能保证Redlock正常工作,因此理论上它的可用性更高。我们前面讨论的单Redis节点的分布式锁在failover的时候锁失效的问题,在Redlock中不存在了,但如果有节点发生崩溃重启,还是会对锁的安全性有影响的。具体的影响程度跟Redis对数据的持久化程度有关。

假设一共有5个Redis节点:A, B, C, D, E。设想发生了如下的事件序列:

  • 客户端1成功锁住了A, B, C,获取锁成功(但D和E没有锁住)。
  • 节点C崩溃重启了,但客户端1在C上加的锁没有持久化下来,丢失了。
  • 节点C重启后,客户端2锁住了C, D, E,获取锁成功。
  • 这样,客户端1和客户端2同时获得了锁(针对同一资源)。

在默认情况下,Redis的AOF持久化方式是每秒写一次磁盘(即执行fsync),因此最坏情况下可能丢失1秒的数据。为了尽可能不丢数据,Redis允许设置成每次修改数据都进行fsync,但这会降低性能。当然,即使执行了fsync也仍然有可能丢失数据(这取决于系统而不是Redis的实现)。所以,上面分析的由于节点重启引发的锁失效问题,总是有可能出现的。为了应对这一问题,antirez又提出了延迟重启(delayed restarts)的概念。也就是说,一个节点崩溃后,先不立即重启它,而是等待一段时间再重启,这段时间应该大于锁的有效时间(lock validity time)。这样的话,这个节点在重启前所参与的锁都会过期,它在重启后就不会对现有的锁造成影响。

关于Redlock还有一点细节值得拿出来分析一下:在最后释放锁的时候,antirez在算法描述中特别强调,客户端应该向所有Redis节点发起释放锁的操作。也就是说,即使当时向某个节点获取锁没有成功,在释放锁的时候也不应该漏掉这个节点。这是为什么呢?设想这样一种情况,客户端发给某个Redis节点的获取锁的请求成功到达了该Redis节点,这个节点也成功执行了SET操作,但是它返回给客户端的响应包却丢失了。这在客户端看来,获取锁的请求由于超时而失败了,但在Redis这边看来,加锁已经成功了。因此,释放锁的时候,客户端也应该对当时获取锁失败的那些Redis节点同样发起请求。实际上,这种情况在异步通信模型中是有可能发生的:客户端向服务器通信是正常的,但反方向却是有问题的。

Martin的分析

Martin Kleppmann在2016-02-08这一天发表了一篇blog,名字叫”How to do distributed locking “,地址如下:

Martin在这篇文章中谈及了分布式系统的很多基础性的问题(特别是分布式计算的异步模型),对分布式系统的从业者来说非常值得一读。这篇文章大体可以分为两大部分:

  • 前半部分,与Redlock无关。Martin指出,即使我们拥有一个完美实现的分布式锁(带自动过期功能),在没有共享资源参与进来提供某种fencing机制的前提下,我们仍然不可能获得足够的安全性。
  • 后半部分,是对Redlock本身的批评。Martin指出,由于Redlock本质上是建立在一个同步模型之上,对系统的记时假设(timing assumption)有很强的要求,因此本身的安全性是不够的。

首先我们讨论一下前半部分的关键点。Martin给出了下面这样一份时序图:

Martin时序图

在上面的时序图中,假设锁服务本身是没有问题的,它总是能保证任一时刻最多只有一个客户端获得锁。上图中出现的lease这个词可以暂且认为就等同于一个带有自动过期功能的锁。客户端1在获得锁之后发生了很长时间的GC pause,在此期间,它获得的锁过期了,而客户端2获得了锁。当客户端1从GC pause中恢复过来的时候,它不知道自己持有的锁已经过期了,它依然向共享资源(上图中是一个存储服务)发起了写数据请求,而这时锁实际上被客户端2持有,因此两个客户端的写请求就有可能冲突(锁的互斥作用失效了)。

初看上去,有人可能会说,既然客户端1从GC pause中恢复过来以后不知道自己持有的锁已经过期了,那么它可以在访问共享资源之前先判断一下锁是否过期。但仔细想想,这丝毫也没有帮助。因为GC pause可能发生在任意时刻,也许恰好在判断完之后。

也有人会说,如果客户端使用没有GC的语言来实现,是不是就没有这个问题呢?Martin指出,系统环境太复杂,仍然有很多原因导致进程的pause,比如虚存造成的缺页故障(page fault),再比如CPU资源的竞争。即使不考虑进程pause的情况,网络延迟也仍然会造成类似的结果。

总结起来就是说,即使锁服务本身是没有问题的,而仅仅是客户端有长时间的pause或网络延迟,仍然会造成两个客户端同时访问共享资源的冲突情况发生。而这种情况其实就是我们在前面已经提出来的“客户端长期阻塞导致锁过期”的那个疑问。

那怎么解决这个问题呢?Martin给出了一种方法,称为fencing token。fencing token是一个单调递增的数字,当客户端成功获取锁的时候它随同锁一起返回给客户端。而客户端访问共享资源的时候带着这个fencing token,这样提供共享资源的服务就能根据它进行检查,拒绝掉延迟到来的访问请求(避免了冲突)。如下图:

fecing token

在上图中,客户端1先获取到的锁,因此有一个较小的fencing token,等于33,而客户端2后获取到的锁,有一个较大的fencing token,等于34。客户端1从GC pause中恢复过来之后,依然是向存储服务发送访问请求,但是带了fencing token = 33。存储服务发现它之前已经处理过34的请求,所以会拒绝掉这次33的请求。这样就避免了冲突。

现在我们再讨论一下Martin的文章的后半部分。

Martin在文中构造了一些事件序列,能够让Redlock失效(两个客户端同时持有锁)。为了说明Redlock对系统记时(timing)的过分依赖,他首先给出了下面的一个例子(还是假设有5个Redis节点A, B, C, D, E):

  • 客户端1从Redis节点A, B, C成功获取了锁(多数节点)。由于网络问题,与D和E通信失败。
  • 节点C上的时钟发生了向前跳跃,导致它上面维护的锁快速过期。
  • 客户端2从Redis节点C, D, E成功获取了同一个资源的锁(多数节点)。
  • 客户端1和客户端2现在都认为自己持有了锁。

上面这种情况之所以有可能发生,本质上是因为Redlock的安全性(safety property)对系统的时钟有比较强的依赖,一旦系统的时钟变得不准确,算法的安全性也就保证不了了。Martin在这里其实是要指出分布式算法研究中的一些基础性问题,或者说一些常识问题,即好的分布式算法应该基于异步模型(asynchronous model),算法的安全性不应该依赖于任何记时假设(timing assumption)。在异步模型中:进程可能pause任意长的时间,消息可能在网络中延迟任意长的时间,甚至丢失,系统时钟也可能以任意方式出错。一个好的分布式算法,这些因素不应该影响它的安全性(safety property),只可能影响到它的活性(liveness property),也就是说,即使在非常极端的情况下(比如系统时钟严重错误),算法顶多是不能在有限的时间内给出结果而已,而不应该给出错误的结果。这样的算法在现实中是存在的,像比较著名的Paxos,或Raft。但显然按这个标准的话,Redlock的安全性级别是达不到的。

随后,Martin觉得前面这个时钟跳跃的例子还不够,又给出了一个由客户端GC pause引发Redlock失效的例子。如下:

  • 客户端1向Redis节点A, B, C, D, E发起锁请求。
  • 各个Redis节点已经把请求结果返回给了客户端1,但客户端1在收到请求结果之前进入了长时间的GC pause。
  • 在所有的Redis节点上,锁过期了。
  • 客户端2在A, B, C, D, E上获取到了锁。
  • 客户端1从GC pause从恢复,收到了前面第2步来自各个Redis节点的请求结果。客户端1认为自己成功获取到了锁。
  • 客户端1和客户端2现在都认为自己持有了锁。

Martin给出的这个例子其实有点小问题。在Redlock算法中,客户端在完成向各个Redis节点的获取锁的请求之后,会计算这个过程消耗的时间,然后检查是不是超过了锁的有效时间(lock validity time)。也就是上面的例子中第5步,客户端1从GC pause中恢复过来以后,它会通过这个检查发现锁已经过期了,不会再认为自己成功获取到锁了。随后antirez在他的反驳文章中就指出来了这个问题,但Martin认为这个细节对Redlock整体的安全性没有本质的影响。

抛开这个细节,我们可以分析一下Martin举这个例子的意图在哪。初看起来,这个例子跟文章前半部分分析通用的分布式锁时给出的GC pause的时序图是基本一样的,只不过那里的GC pause发生在客户端1获得了锁之后,而这里的GC pause发生在客户端1获得锁之前。但两个例子的侧重点不太一样。Martin构造这里的这个例子,是为了强调在一个分布式的异步环境下,长时间的GC pause或消息延迟(上面这个例子中,把GC pause换成Redis节点和客户端1之间的消息延迟,逻辑不变),会让客户端获得一个已经过期的锁。从客户端1的角度看,Redlock的安全性被打破了,因为客户端1收到锁的时候,这个锁已经失效了,而Redlock同时还把这个锁分配给了客户端2。换句话说,Redis服务器在把锁分发给客户端的途中,锁就过期了,但又没有有效的机制让客户端明确知道这个问题。而在之前的那个例子中,客户端1收到锁的时候锁还是有效的,锁服务本身的安全性可以认为没有被打破,后面虽然也出了问题,但问题是出在客户端1和共享资源服务器之间的交互上。

在Martin的这篇文章中,还有一个很有见地的观点,就是对锁的用途的区分。他把锁的用途分为两种:

  • 为了效率(efficiency),协调各个客户端避免做重复的工作。即使锁偶尔失效了,只是可能把某些操作多做一遍而已,不会产生其它的不良后果。比如重复发送了一封同样的email。
  • 为了正确性(correctness)。在任何情况下都不允许锁失效的情况发生,因为一旦发生,就可能意味着数据不一致(inconsistency),数据丢失,文件损坏,或者其它严重的问题。

最后,Martin得出了如下的结论:

  • 如果是为了效率(efficiency)而使用分布式锁,允许锁的偶尔失效,那么使用单Redis节点的锁方案就足够了,简单而且效率高。Redlock则是个过重的实现(heavyweight)。
  • 如果是为了正确性(correctness)在很严肃的场合使用分布式锁,那么不要使用Redlock。它不是建立在异步模型上的一个足够强的算法,它对于系统模型的假设中包含很多危险的成分(对于timing)。而且,它没有一个机制能够提供fencing token。那应该使用什么技术呢?Martin认为,应该考虑类似Zookeeper的方案,或者支持事务的数据库。

antirez的反驳

Martin在发表了那篇分析分布式锁的blog (How to do distributed locking)之后,该文章在Twitter和Hacker News上引发了广泛的讨论。但人们更想听到的是Redlock的作者antirez对此会发表什么样的看法。

Martin的那篇文章是在2016-02-08这一天发表的,但据Martin说,他在公开发表文章的一星期之前就把草稿发给了antirez进行review,而且他们之间通过email进行了讨论。不知道Martin有没有意料到,antirez对于此事的反应很快,就在Martin的文章发表出来的第二天,antirez就在他的博客上贴出了他对于此事的反驳文章,名字叫”Is Redlock safe?”,地址如下:

这是高手之间的过招。antirez这篇文章也条例非常清晰,并且中间涉及到大量的细节。antirez认为,Martin的文章对于Redlock的批评可以概括为两个方面(与Martin文章的前后两部分对应):

  • 带有自动过期功能的分布式锁,必须提供某种fencing机制来保证对共享资源的真正的互斥保护。Redlock提供不了这样一种机制。
  • Redlock构建在一个不够安全的系统模型之上。它对于系统的记时假设(timing assumption)有比较强的要求,而这些要求在现实的系统中是无法保证的。

antirez对这两方面分别进行了反驳。

首先,关于fencing机制。antirez对于Martin的这种论证方式提出了质疑:既然在锁失效的情况下已经存在一种fencing机制能继续保持资源的互斥访问了,那为什么还要使用一个分布式锁并且还要求它提供那么强的安全性保证呢?即使退一步讲,Redlock虽然提供不了Martin所讲的递增的fencing token,但利用Redlock产生的随机字符串(my_random_value)可以达到同样的效果。这个随机字符串虽然不是递增的,但却是唯一的,可以称之为unique token。antirez举了个例子,比如,你可以用它来实现“Check and Set”操作。

然后,antirez的反驳就集中在第二个方面上:关于算法在记时(timing)方面的模型假设。在我们前面分析Martin的文章时也提到过,Martin认为Redlock会失效的情况主要有三种:

  • 时钟发生跳跃。
  • 长时间的GC pause。
  • 长时间的网络延迟。

antirez肯定意识到了这三种情况对Redlock最致命的其实是第一点:时钟发生跳跃。这种情况一旦发生,Redlock是没法正常工作的。而对于后两种情况来说,Redlock在当初设计的时候已经考虑到了,对它们引起的后果有一定的免疫力。所以,antirez接下来集中精力来说明通过恰当的运维,完全可以避免时钟发生大的跳动,而Redlock对于时钟的要求在现实系统中是完全可以满足的。

Martin在提到时钟跳跃的时候,举了两个可能造成时钟跳跃的具体例子:

  • 系统管理员手动修改了时钟。
  • 从NTP服务收到了一个大的时钟更新事件。

antirez反驳说:

  • 手动修改时钟这种人为原因,不要那么做就是了。否则的话,如果有人手动修改Raft协议的持久化日志,那么就算是Raft协议它也没法正常工作了。
  • 使用一个不会进行“跳跃”式调整系统时钟的ntpd程序(可能是通过恰当的配置),对于时钟的修改通过多次微小的调整来完成。

而Redlock对时钟的要求,并不需要完全精确,它只需要时钟差不多精确就可以了。比如,要记时5秒,但可能实际记了4.5秒,然后又记了5.5秒,有一定的误差。不过只要误差不超过一定范围,这对Redlock不会产生影响。antirez认为呢,像这样对时钟精度并不是很高的要求,在实际环境中是完全合理的。

好了,到此为止,如果你相信antirez这里关于时钟的论断,那么接下来antirez的分析就基本上顺理成章了。

关于Martin提到的能使Redlock失效的后两种情况,Martin在分析的时候恰好犯了一个错误(在本文上半部分已经提到过)。在Martin给出的那个由客户端GC pause引发Redlock失效的例子中,这个GC pause引发的后果相当于在锁服务器和客户端之间发生了长时间的消息延迟。Redlock对于这个情况是能处理的。回想一下Redlock算法的具体过程,它使用起来的过程大体可以分成5步:

  1. 获取当前时间。
  2. 完成获取锁的整个过程(与N个Redis节点交互)。
  3. 再次获取当前时间。
  4. 把两个时间相减,计算获取锁的过程是否消耗了太长时间,导致锁已经过期了。如果没过期,
  5. 客户端持有锁去访问共享资源。

在Martin举的例子中,GC pause或网络延迟,实际发生在上述第1步和第3步之间。而不管在第1步和第3步之间由于什么原因(进程停顿或网络延迟等)导致了大的延迟出现,在第4步都能被检查出来,不会让客户端拿到一个它认为有效而实际却已经过期的锁。当然,这个检查依赖系统时钟没有大的跳跃。这也就是为什么antirez在前面要对时钟条件进行辩护的原因。

这里antirez所说的“Martin指出的第一个问题”具体是什么呢?在本文上半部分我们提到过,Martin的文章分为两大部分,其中前半部分与Redlock没有直接关系,而是指出了任何一种带自动过期功能的分布式锁在没有提供fencing机制的前提下都有可能失效。这里antirez所说的就是指的Martin的文章的前半部分。换句话说,对于大延迟给Redlock带来的影响,恰好与Martin在文章的前半部分针对所有的分布式锁所做的分析是一致的,而这种影响不单单针对Redlock。Redlock的实现已经保证了它是和其它任何分布式锁的安全性是一样的。当然,与其它“更完美”的分布式锁相比,Redlock似乎提供不了Martin提出的那种递增的token,但antirez在前面已经分析过了,关于token的这种论证方式本身就是“不切实际”的,或者退一步讲,Redlock能提供的unique token也能够提供完全一样的效果。

reference